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ABSTRACT 
 
This paper presents a novel scheme for large deformation analysis of space truss structures, 
including both geometric and material nonlinearities, using a predictor-corrector procedure, 
titled as fixed incremental displacement (FID) method. The nonlinear equilibrium equations 
are solved using an incremental-iterative method based on the displacement control scheme, 
as, by employing a specified displacement, the corresponding load will be obtained. In the 
present method, the ratio of the size of increment displacement vector to that of total 
displacement is assumed to be constant at the beginning of each increment. The geometric 
nonlinearity is considered based on an updated Lagrangian formulation, while the material 
nonlinearity is accounted for by tracing a complete stress-strain relationship. A computer 
program based on the algorithm is developed for analysis of space structures with complex 
behaviors, including snap-through buckling, snap-back, unloading and inelastic post-
buckling analysis. This algorithm can accurately trace the equilibrium path of nonlinear 
problems. To demonstrate the efficiency and accuracy of the method developed here, some 
well-known trusses are investigated and analyzed using the aforementioned algorithm and 
the results are compared with those of cylindrical arc-length method. 
 
Keywords: Nonlinear; inelastic analysis; FID method; space truss; snap-through; post 
buckling. 

 
 

1. INTRODUCTION 
 

Nowadays, non-linear analysis of structures has become an attractive matter and appears 
necessary for most structural engineering applications, whereas tendency for more accurate 
structural analysis has increased by many engineers. For only geometric non-linearity, 
incremental procedures were originally adopted by Turner et al. [1] and Argyris [2] using 
the geometric stiffness matrix in conjunction with an updating of coordinates and, possibly, 
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an initial displacement matrix. A similar approach was adopted with material non-linearity 
[3,4]. In particular, for plasticity, the structural tangent stiffness matrix (relating increment 
of load to increments of displacement) incorporated a tangential modular matrix which 
related the increments of stress to the increments of strain [4,5]. 

The non-linear behavior of trusses has been investigated extensively by utilizing various 
member models and non-linear analysis methods as presented by Papadrakakis [6], Smith 
[7], Murtha-Smith [8], Hill et al. [9], de Freitas and Ribei [10], among others. Murtha-Smith 
[11] and Blandford [12] reviewed these models. Truss structures realistic behavior 
represented by many researchers. Hill et al. [9]proposed a truss model behavior based on the 
experimental equations of stress-strain relationship. Their model traces the inelastic post-
buckling response of truss members in the post-buckling range using appropriate 
constitutive equations. The capabilities of the Hill et al.’s model are extended by Blandford 
[13,14] and Ramesh and Krishnamoorthy [15] using the arc-length method and dynamic 
relaxation method respectively. 

The most complete nonlinear analysis of truss structures is a kind of analysis in which 
bothgeometric and material nonlinearity have considered duringthe analysis process. 
Jagannathan et al. [16] have considered a total Lagrange formulation with elastic material 
properties on the geometric nonlinear analysis of space trusses using Green-Lagrange 
representation of the axial strain. Papadrakakis [6] has used the dynamic relaxation method 
for the large displacement analysis of trusses. Blandford [13] has considered static analysis 
of space truss structures including inelastic material and large deformation geometric 
nonlinearities. Nonlinear analysis problem, formulated as an application of minimum 
potential energy principle, is obviously an optimization problem, have been presented by 
Toklu [17]. Saffari and Mansouri [18] proposed two-point method for non-linear analysis of 
space truss structures. Also a new approach for nonlinear analysis of structures, using cubic 
spline function, introduced by Saffari et al. [19] accelerates the convergence rate. 

The space trusses have highly nonlinear behavior regarding the number of degrees of 
freedom and the level of load applied. Among the nonlinear analysis methods, simple 
iterative and incremental methods are weak in passing the limit points of snap-through or 
snap-back of the trusses. In fact, they may fail in passing the limit points of load and 
displacement. The concept of combining incremental (predictor) and iterative (corrector) 
methods was introduced by Brebbia and Connor [20] and Murray and Wilson [21] who 
thereby adopted a form of ‘continuation method’. Among the methods for solving the 
nonlinear system of equations, the incremental iterative Newton-Raphson method is used 
much more, Oden [22]. The Newton-Raphson method is one powerful approach to evaluate 
the response of a structure to a set of successive loads. Amodified Newton-Raphson 
procedure was also recommended by Oden [23], and Zienkiewicz [4]. In contrast to the full 
Newton-Raphson method, the stiffness matrix would not be continuously updated. However, 
this method diverges when the solution is close to limit points so is not able to present the 
real behavior of the structure. As the load level is constant in the method of load increments, 
passing the limit points is not possible. Also, if there are serious changes in the load-
displacement path, the number of iterations for convergence will be increased and so the 
method will be time consuming and expensive [24]. 

A complete investigation of the large displacement inelastic behavior of structures 
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requires tracing the equilibrium path and identifying the critical points. To achieve this, 
several techniques and methods have been presented in the literature. In the structures with 
complex behavior the load-displacement curve is a combination of softening and hardening 
states with limit points. A limit point refers to the turning point for the equilibrium path of a 
structure, which can be further considered as the transition point from stable to unstable 
equilibrium states or vice versa. In analysis of such structures, the simple incremental 
iterative methods unable to pass this limit points. The simple incremental iterative methods 
couldn’t trace the equilibrium path after the limit points. For resolving such disadvantages, 
advanced analysis methods have been developed [25]. To overcome these limitation, many 
solution algorithms or combined methods have been presented and various methods for 
enhancement of the analysis speed have been presented by researchers. Eriksson [26] 
introduced Several path-following procedures, based on analytical elastic stability theory, 
for geometrically nonlinear structural analysis. Kwasniewski [27] suggested the complete 
equilibrium paths for several trusses. Riks [28,29] proposed the arc-length method, and 
Crisfield [30] also proposed several different versions of the arc-length method by updating 
constraint equations. An algorithm, known as the modified normal flow algorithm, for 
geometrically nonlinear analysis of space trusses, especially for passing the equilibrium 
path, was proposed by Saffari et al. [31]. Generalized displacement control (GDC) method 
for large-deflection elastic and inelastic post-buckling analysis of space truss structures 
presented by Thai and Kim [32]. In a novel work Saffari et al. [33] introduce an efficient 
numerical method in second-order inelastic analysis of space trusses. In this paper, the 
Newton-Raphson method is combined with three different algorithms includes the 
generalized minimum residual, the least squares, and the biconjugate gradient. Of these 
algorithms, the most effective at reducing the number of iterations and the time required is 
identified. 

Using fixed incremental displacement algorithm, this paper, proposed a novel method 
that has a possibility of passing the limit points in the case of highly nonlinear behavior 
state. In the fixed incremental displacement algorithm the nonlinear equilibrium equations 
are solved using an incremental-iterative method, based on the displacement control scheme, 
as, by employing a specified displacement, the corresponding load will be obtained. In the 
present method, the ratio of the size of increment displacement vector to that of total 
displacement is assumed to be constant at the beginning of each increment. 

This paper is organized as follows. In the next section, we will have a brief review of 
nonlinear analysis of trusses, including both geometric and material nonlinearity. Section 3 
is allocated to implementation of FID method for nonlinear analysis. In section 4, the 
validity of the proposed method is illustrated with some examples.  

 
 

2. NONLINEAR ANALYSIS OF SPACE TRUSSES 
 

Nonlinear analysis becomes necessary when the stiffness of the part changes under its 
operating conditions. If changes in stiffness come only from changes in shape, nonlinear 
behavior is defined as geometric nonlinearity. In fact, in this case, large displacement and 
small strain occur. If changes in stiffness come from changes in stress-strain relation, 
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nonlinear behavior is defined as material nonlinearity. The accurate case is that both material 
and geometric effects are considered in structural analysis. 

Large displacement inelastic analysis of space trusses, including both geometric and 
material nonlinearities is discussed below. A number of models have been developed to 
predict the nonlinear behavior of space trusses. The accuracy of the stress-strain relationship 
used, affect the inelastic post-buckling response of truss structures. In the present study, a 
relatively simple stress-strain relationship, proposed by Hill et al. [9], is adopted to predict 
the inelastic post-buckling behavior of truss members. The method of analysis used in this 
paper is based on the work carried out by Kassimali and Bidhendi [34]. 

Fig. 1 shows a typical prismatic member of a space truss. Let F1 to F6 denote member end 
forces referring to a general global system as shown in Fig. 1(a), and V1 to V6 are the 
corresponding end displacements. For this truss member in its initial configuration, the 
global nodal coordinates are defined as 1 1 1( ,  ,  )X Y Z and 2 2 2( ,  ,  )X Y Z , for node 1 and 2, 

respectively. For the truss member in its current configuration (deformed shape), the global 

nodal coordinates are 1 1 1 2 1 3( ,  ,  )X V Y V Z V    for node 1 and 1 1 1 2 1 3( ,  ,  )X V Y V Z V  

for node 2. 
 

 
Figure 1. Force and displacement in global and local coordinates: (a) the force 

and deformation of member in general system; (b) the member in the local 
coordinate 
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Fig. 1(b) shows a typical prismatic member of a space truss in the local coordinate. The 
relationship between member end forces in global and local coordinates is given by 

 

(1)    F Q B  
 

In which Q is the member axial force in local coordinates and  B  is the transformation 

vector, which can be expressed as follows 
 

(2)    
T

B l m n l m n   
 

 
In which l, m, n are the direction cosines of the member axis in the deformed 

configuration (line connecting element nodal points) and L is the member length in the 
deformed configuration. The member axial deformation, u, in local coordinates can be 
expressed in terms of initial length, L, and deformed length, L , as 

 

(3) u L L    
 
The axial force in the truss member is Q A as A is cross sectional area and   defined 

in the cases below. 
For tensile members: 
 

(4a)     yE ,      
(4b)     y y,    

 
 
For compressive members: 
 

(5a)     crE ,      
(5b)    exp     l cr l 1 2 crX X ,             

   
 

where y  and y  are the yield strain and corresponding yield stress, respectively; 1X  and 

2X  are the constants depending on slenderness ratio ( / )L r of the compressive members; 

l crr   is the asymptotic lower stress limit; cr     is the axial strain measured from 

the beginning of the inelastic post-buckling range, as shown in Fig. 2; 2 2
cr EI / AL   and 

cr cr / E   are the Euler critical buckling stress and corresponding critical buckling strain, 

respectively. In which E is the elastic modulus of material; I, A and L are the weak axis 
moment of inertia, area, and length of truss element, respectively [32]. The term   inEqs. 
(4) and (5) describes strain that can be defined in terms of engineering, logarithmic, Green 
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or Almansi strain [24]. In this paper we used engineering strain, so   1L / L   . 

 

 
Figure 2. Assumed stress-strain curve for loading path 

 
The incremental form of the equilibrium equation for the truss element, subjected to 

external forces,  P , can be derived as 

 

(6)    f ( u ) P  
 

In which  f is the resultant internal forces, and  u is the generalized coordinates 

consisting of the translation of end joints. The member force deformation relationships 

denote that  f  is a highly nonlinear function of  u . The incremental form of the Eq. (6) 

can be rewritten as follows 
 

(7)     u P     
 

where   is the system tangent stiffness matrix obtained from assembling the tangential 

stiffness matrixes of the members,  u  is the displacement increment vector, and  P is 

load increments. The tangential stiffness matrix of the member, [ ]T , can be expressed by 

 

(8)       
TAE

T B B Q g
L

 
  
   
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where [g] is geometric matrix that can be found in Tezcan [35]; and E  is the same as E  as 
for the elastic case and elasto-plastic tangent modulus after yield stress. When a member is 

in the compression state and cr  , for the inelastic case, it is equal to the tangent 

modulus 
 

(9)     3
exp

2
cr 1 1 2 1 2E X X . X X    

              
 

Unlike the compressive loading path, which is the same for all members with the same 
slenderness ratio, compressive unloading paths are dependent on the state of stress in each 
member at the instant of loading [6]. A member unloading from the inelastic post-buckling 

range  cr  , as shown in Fig. 3, will follow a much more complex unloading curve. 

Since it is difficult to develop a constitutive equation adequate for modeling stress reversal 
in buckled members, a simplified assumption has been adopted. The unloading path of 
buckled members in the inelastic post-buckling range, as shown in Fig. 3, is assumed as a 

straight line from the stress r
 
and strain r , at stress reversal, to a stress and strain 

corresponding to one-half of the material yield stress 
y . When the loading path reaches 

pointA, member behavior follows relations in Eq. (4). 
 

 
Figure 3. Assumed stress-strain curve for unloading path 

 
 

3. FID METHOD 
 

There are many methods for nonlinear analysis of structures in the literature. Among them, 
the line search technique is widely used within mathematical programming. There are a wide 
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range of procedures developed within this field which are extremely relevant to nonlinear 
analysis. The main process of the method proposed herein is also based on the line search 
technique. In the following section this proposed method has been described. 

 
3.1 Main concepts 
The equilibrium equation of nonlinear system can be written as 
 

(10)   int, ( ) extR u F u F    
 

where intF  are the internal forces which are functions of displacement, u, the vector extF  is a 

fixed external loading vector and the scalar   0 1  is a load-level parameter that 

multiplies extF . 

The method proposed in this paper is based on displacement control, as by employing a 
specified displacement, corresponding load will be obtained. In the present method, the ratio 
of the size of increment displacement vector to the size of total displacement is assumed to be 
equal to a parameter entitled as FID that is constant at the beginning of each increment. So, 

 

(11) .

n
in

i n
i

d
FID

d


  

 
In the above equation n

id and n
id are total displacement vector and increment 

displacement vector pertinent to the ith iteration of the nth load increment, respectively. So 
once the displacement increment vector, n

id , is determined, the total displacement vector 

of structure, n
id , at the end of the ith iteration can be accumulated as 

1
n n n
i i id d d  . The 

term n
iFID (Fixed Incremental Displacement) is a constant parameter, 0 1n

iFID  , the 

value of which can be fixed or variable during loading of structure. In this paper, a constant 
value is considered for this parameter at the beginning of each increment (load step), as this 
value declines gradually in each iteration until convergence is achieved. n

id is defined as 

 

(12)       1 1

int

nn n n n n
i i i i i exti

d K R K F F 
 

      
 
in the above equation, n

iK  and n
iR are tangent stiffness matrix and unbalanced force 

vector in the ith iteration of the nth load increment, respectively.  int

n

i
F and extF are the 

internal force vector in the current step and vector of loading pattern (Fixed external load), 

respectively. n
i is load coefficient considered as unknown. Eq. (12) can be broken into the 

following equations. 
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(13) ˆn n n n
i i i id d d    

 
(14)    

1

int

nn n
i i i

d K F


 
 

(15)  
1ˆn n

i i extd K F



 

 
By replacing the denominator in Eq. (11) with 

1
n n
i id d   and using Eq. (13), after some 

algebraic operation and simplification, a quadratic equation is achieved in terms of n
i as 

 

(16)  
2

1 2 3 0n n
i ia a a     

 
where 
 

(17a)     
2

1
ˆ ˆ1 .n n n

i i ia FID d d  
 

(17b)          2 2

2 1
ˆ ˆ2 1 . .n n n n n n

i i i i i ia FID d d FID d d    
 

(17c)         
2 2

3 1 1 11 . 2 . .n n n n n n n n
i i i i i i i ia FID d d FID d d d d       

 
 

In Eqs. (17a) to (17c), the sign “.” represents the inner product of two vectors. The 
quadratic Eq. (16) has two roots, 

1 and 
2 . The acceptance criteria for these answers will 

be discussed in the next section. 
 

3.2 Acceptance criteria of   
In order to select appropriate , one must firstly address the issue of finding appropriate root 
of Eq. (16). Since vectors n

id and 
1

n
id 

should not be in opposite directions, Eq. (18) must 

be satisfied. 
 

(18)  1. 0n n
i id d     

 
Substituting Eq. (13) in Eq. (18) will give 
 

(19)    1 1
ˆ. . 0n n n n n

i i i i id d d d        
 

Depending on the sign of 
1

ˆ( . )n n
i id d  

 the above inequality is rewritten into the form 

below 
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(20) 
1 1

11

ˆ   ,    ( . ) 0 ( . )
,   

ˆˆ ( . )   ,    ( . ) 0

n n n n n
i c i i i i

c n nn n n
i ii c i i

d d d d

d dd d

     


    

 



  
 

 
 

 
From the results obtained by Eq. (16), one that is acceptable when it satisfies Eq. (20). 

Acceptable value n
i can be obtained using the following equation: 

 

(21) 
1 2 1

1 2 1

ˆmax( , , ), ( . ) 0

ˆmin( , , ), ( . ) 0

n n n
i c i i

n n n
i c i i

d d

d d

     

     





  


 
 

 
3.3 Acceptance criteria of FID parameter 
As it is clear from Eqs. (17), coefficients of quadratic equation (i.e Eq. (16)) depend on 

n
iFID  parameter. In order for the values obtained for n

i to be real, it is necessary that the 

following equation are satisfied. 
 

(22) 2
2 1 34 0a a a   

 
Substituting Eq. (17) into Eq. (22) we will have 
 

(23)    
4 2

1 2 3 0n n
i ib FID b FID b    

 
where constant coefficients are defined as follows 

 

(24a)              
2

1 1 1 1 1
ˆ ˆ ˆ ˆ. . . . . 2 .n n n n n n n n n n n n

i i i i i i i i i i i ib d d d d d d d d d d d d              
 

(24b) 
        

      
2 1 1 1

1

ˆ ˆ2 . . . 0.5 .

ˆ ˆ ˆ2 . . .

n n n n n n n n
i i i i i i i i

n n n n n n
i i i i i i

b d d d d d d d d

d d d d d d

    

    

  



  

   

(24c)      
2

3
ˆ ˆ ˆ. . .n n n n n n

i i i i i ib d d d d d d      

 
Inequality (23) shows that any arbitrary value is not acceptable for FID. This parameter 

should be provided in such a way that the inequality is satisfied. Putting the inequality (23) 
equal to zero, the roots are obtained as follows 
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(25) 

2
1,2

1

22
3,4 2 1 3

1

( )
2

( ) , 4
2

n
i

n
i

b
FID

b

b
FID b b b

b

   
 



   

    


 

 
In each iteration of the loading step, the value of n

iFID  must satisfy Eq. (23). Otherwise, 

according to the roots of the equation and sign determination, an appropriate value for 
n
iFID  must be selected. 

 
3.4 Convergence criteria 
As described previously, 

1
nFID can be fixed during loading of structure or changed in each 

loading step. Although in the present paper the first strategy is used, as for the second 
approach, it can be expressed that the value of 

1
nFID can be changed according to the 

changes of structure stiffness. In fact, in the vicinity of limit points, it is better to use smaller 
amounts of 

1
nFID . Meanwhile, when the behavior of structure is close to linear, it is 

possible to increase the value of 
1
nFID . Moreover, in both approaches, in order to achieve 

convergence, the value of n
iFID must be decreased in each iteration of load increment. In 

this paper, the term n
iFID  is reduced in each iteration as 

 

(26) ( 1)
1

n i n
iFID FID   

 

In Eq. (26),  is constant coefficient  0 1  . The authors proposed that 0.9  will 

result in the best approximation. Value of 
1
nFID parameter can be considered different for 

each problem. Here the author proposed 0.01 for this parameter. 
In the present method, the relation below was proposed as the convergence criteria: 
 

(27) 1
  

n

n
i

R
Error R Tolerance


    

 
Actually, the error is the length of unbalanced force vector calculated in each iteration of 

every increment. Convergence tolerance is defined as a fraction of the length of unbalanced 
force in the first iteration of each load increment.  is a constant value greater than unity. 

The authors proposed that 5 10  is an appropriate range, so in the present study 

assumed 5  . 
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Figure 4. Flowchart of the FID algorithm 



INELASTIC POST-BUCKLING ANALYSIS OF SPACE TRUSSES … 

 

949

3.5 Nonlinear solution algorithm 
A computer program based on proposed method has been written in MATLAB and 
representative results are provided. The FID algorithm can be described in a step-by-step 
procedure as follows: 

Step 1: Initialize variables and parameters, such as structural geometry, connectivity, 
boundary conditions, and material properties. 

Step 2: Determine the initial load factor 1
1 , max , maxn , ,  and 

1
nFID  parameters. 

Step 3: For the first iteration of the first load increment ( 1, 1)i n  , form tangent 

stiffness matrix and calculate internal force, unbalanced force and displacement vectors. 
Step 4: For the load increments after the first step let 1i i  ; 

4-1: Calculate tangent stiffness matrix and internal force vector. 

4-2: Calculate vectors n
id and ˆ n

id according to Eqs. (14) and (15). 

4-3: Calculate n
iFID  according to Eq. (26). 

4-4: Control inequality (23) and modify n
iFID  parameter to satisfy this inequality. 

4-5: Calculate c according to Eq. (20).  

4-6: Determine appropriate load factor n
i  according to Eq. (16) and (21). 

4-7: Calculate n
id according to Eq. (13) and 

1
n n n
i i id d d  . 

4-8: For 1i   calculate Tolerance value according to Eq. (27) 
4-9: Calculate unbalanced force vector according to Eq. (10) 
4-10: Calculate Error according to Eq. (27). 
4-11: Return to the top of the fourth step until inequality (27) is satisfied. 

Step 5: Check the termination: whether the total number of steps (increments, n) is 

smaller than the preset number maxn  or whether the load factor n
i  at the end of increment is 

smaller than the allowable value max let 1n n   and 1i  and go to step 4. Otherwise, stop 

the procedure. A flowchart of the above procedure is illustrated in Fig. 4. 
 
 

4. NUMERICAL EVALUATIONS 
 

In this section, the validity of the proposed method is confirmed by the examination of several 
results. Four examples are presented and discussed to verify the accuracy of the proposed 
procedure in predicting large deflection inelastic behavior of space steel trusses. For solving 
nonlinear equations, a new iterative method is adopted and the iterative process will stop when 
the convergence criteria is satisfied. Two cases of elastic analysis and inelastic post-buckling 

(IPB) analysis have been performed using the following properties: 1 50X  ; 2 100X  ; 

0.4r cr  . The computer program is developed based on the procedure described in this 

paper. The numerical examples were solved in a microcomputer environment so that the 
efficiency of the proposed procedure obtained from the present study can be compared with 
the modified arc-length method (cylindrical arc-length method) in nonlinear behavior of space 
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trusses. The cylindrical arc-length method is developed by Crisfield [24]. 
4.1 Toggle truss 
The toggle truss described in Fig. 5 has been investigated by many researchers. The truss is 
composed of two identical members with the area of 96.77 cm2 and moment of inertia of 

745.18 cm4. The elastic modulus and yield stress of the material are 5 27.03 10  kg/cmE  

and 4 24 10  kg/cmy   , respectively. This truss analyzed previously by Papadrakakis [6], 

using the dynamic relaxation method for various stress-strain relationships, Hill et al. [9] 
using the arc-length method and also by Thai and Kim [32] using the GDC method. 

 

 
Figure 5. Toggle truss 

 
Fig. 6 depicted the comparison of load-displacement curves obtained by the present study 

and arc-length method for elastic and IPB analysis. It is clear that the results of the proposed 
method are very close to those resulted from arc-length method. The limit loads obtained by 
the present work and arc-length method for elastic and IPB analysis are presented in Table 1. 
In this table we consider the results obtained from the arc-length method as reference 
solution. So the differences of limit loads predicted by present study using FID method and 
reference method are 1.309% and 1.034% for elastic and IPB analysis, respectively. 

 

 
Figure 6. Load-displacement curve for toggle truss 
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Table 1:Analysis result of toggle truss 

Analysis type Limit load (kg)Arc-length Present Error (%) 
Elastic 3.82×106 3.77×106 1.309 

IPB 2.9×106 2.87×106 1.034 

 
4.2 Star dome truss 
Fig.7 shows configuration of a 24-member star dome truss subjected to an external 
concentrated load P  at the center with its associated data. This structure has 21 degrees of 
freedom. all members of the truss has a cross-sectional area of 0.1 cm2 and weak axis 
moment of inertia of 0.00417 cm4. The elastic modulus and yield stress of the material are 

7 22.034 10  N/cmE   and 4 24 10  kg/cmy   , respectively. This structure was 

analyzed previously by Hill et al. [9], Ramesh and Krishnamoorthy [15] and Thai and Kim 
[32] using the arc-length, the dynamic relaxation and GDC method respectively. 
 

 
Figure 7. Star dome truss 

 

This three dimensional truss has been analyzed using the method developed in this paper 
and the equilibrium path has been drawn as shown in Fig. 8. This figure illustrated the load-
displacement curve of node 1 obtained by the present study and arc-length method for elastic 
and IPB analysis. It is observed that the result obtained by the proposed procedure are in 
good agreement with those resulted from the arc-length method. The equilibrium paths of 
the truss at node 2 for elastic and IPB analysis are also shown in Fig. 9. The limit loads 
obtained by the present work and arc-length method for elastic and IPB analysis are also 
presented in Table 2. The differences of limit loads predicted by present study and arc-
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length method are 0.154% and 0.089% for elastic and IPB analysis, respectively. 

 
Figure 8. Load-displacement curves of star dome truss at node 1 

 

 
Figure 9. Load-displacement curves of star dome truss at node 2 

 

Table 2: Analysis result of star truss 

Analysis type Limit load (kg)Arc-length Present Error (%) 
Elastic 641.07 642.06 0.154 

IPB 504.46 504.91 0.089 

 
4.3 Geodesic dome truss 
Configuration of the geodesic dome truss, composed of 156 members and 61 nodes, shown 
in Fig. 10 is taken from Ramesh and Krishnamoorthy [15]. This truss is subjected to 
concentrated vertical load at the center. All members have identical cross sections of 6.5 cm2 
and weak axis moment of inertia of 1.0 cm4. The elastic modulus and yield stress of the 
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material are 
26895 KN/cmE  and 2400 KN/cmy  , respectively. The elevation of the 

truss is defined by the equation 2 2 2( 7.2) 60.84x y z    . 

 

 
Figure 10. Geodesic dome truss 

 
The load-displacement curve for node 1 and 2 of this structure is shown in Fig. 11 and Fig. 

12, respectively. The comparison shows that the curves obtained by the present study are 
nearly coincident with the curves resulted from arc-length method for elastic and IPB analysis. 
The limit loads obtained by the present work and arc-length method for elastic and IPB 
analysis are also presented in Table 3. The differences of limit loads predicted by present study 
and arc-length method are 0.635% and 0.766% for elastic and IPB analysis, respectively.  

 

 
Figure 11. Load-displacement curve for geodesic dome truss at node 1 
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Figure 12. Load-displacement curve for geodesic dome truss at node 2 

 
Table 3:Analysis result of star truss 

Analysis type Limit load (kN)Arc-length Present Error (%) 
Elastic 3.15 3.17 0.635 

IPB 2.61 2.63 0.766 

 

4.4 Two-dimensional circular arch truss 
Fig. 13 shows a two-dimensional circular arch truss, composed of 101 elements, taken 
from Crisfield [36]. This structure was analyzed by Hrinda [37] using the arc-length 
method and Thai and Kim [32] using the GDC method. This truss is subjected to a 
vertical load of 4 MN at the apex. All members of the truss are assumed to have the 
same cross-sections with 50EA MN . 

 

 
Figure 13. A two-dimensional circular arch truss 

 
The equilibrium path curves of this truss for elastic analysis obtained by the present 

method and arc-length method are compared in Fig. 14. It can be seen that the results 
generated by the present study are almost identical with those predicted by the arc-length 
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method. The snap-back and snap-through points resulted from the present study occur at the 
same point obtained from the arc-length method. This example demonstrates the efficiency 
and capability of the proposed method in tracing the equilibrium path of highly nonlinear 
trusses involving complex snap-through and snap-back phenomena. 

 

 
Figure 14. Load-displacement curves of two-dimensional circular arch truss 

 
 

5. CONCLUSIONS 
 

In this paper, a new scheme was proposed for large deformation inelastic post-buckling 
analysis of space truss structures. An incremental-iterative procedure was derived, based 
upon the displacement control scheme, using fixed incremental displacement (FID). By 
employing a specified displacement, the corresponding load will be obtained. In the present 
method the ratio of the size of increment displacement vector to that of total displacement is 
assumed to be constant at the beginning of each increment. A numerical procedure has been 
developed and implemented into a computer program. Numerical examples demonstrate the 
feasibility and accuracy of the FID algorithm, to be highly suitable in predicting nonlinear 
response of structures with multiple limit points and snap-back points, and trace the 
equilibrium path accurately. In spite of the fact that the procedure herein explained is only 
implemented for truss structures, it is possible to generate the proposed method for other 
structures. 
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